Greetings!

I had to get in line and thank you and commend you for that most excellent Curta site you have provided. "Wow" is all I can say - outstanding! I learned how to use one with Jan Meyer's simulator, and you have afforded me the opportunity to learn that machine inside out; what a masterpiece that man invented! I can't thank you enough.

Perhaps. I have a few things Curta that you might find interesting - the spreadsheet pic I attached started out just to do the prime determination, then I sort of went overboard. That pic is 3 screenshots of it, to top being as-saved. The 2nd one shows a prime, and at the bottom is a non-prime serial number. It:

- flags appropriately the even multiplicand pairs with the *,
- counts the unique even multiplicand pairs for the number,
- determines Curta type via s/n, and
- calculates the formula date of manufacture.

It's an old Lotus 123 I use, so I didn't attach that; I imagine a current Excel could translate it. Let me know if you'd like it. 76976 is my own, by the way.

I have devised 2 additional computing techniques you might enjoy... The first is $\mathrm{a} * \mathrm{~b}+\mathrm{c}^{*} \mathrm{~d}$. It is virtually identical to the linear interpolation example in the book in that both computations are the sum of 2 products. For the interpolation, you don't clear CR; for $a * b+c^{*} d$ you would, and change SR appropriately as in each computation - but in each case you accumulate the sum in RR.

Then, I thought: why not $\mathrm{a} / \mathrm{b}+\mathrm{c} / \mathrm{d}$?! It is similarly almost equally easy to accumulate a sum of quotients in CR... I'll type it out for you if you ask, but I'd bet money you can figure it out in under 5 minutes. If I could, you can.

One last observation here in closing Rick... I am sure you have read in Cliff Stoll where 355/113 = 3.14159 as a Curta geek exercise. If you try that computation on the Curta and "forget" to push the reversing lever down for the subtractive division, you will end up with the nines complement of pi in CR! Almost. All but the last digit is correct; that is a 1 , and not a 0 . It would appear the carry mechanism failed working backwards like that. It hasn't really, of course, it carried perfectly all the way up to there. The seeming extra carry it did just sets it up for doing a "ones borrow" for the subsequent subtraction to get the next digit to the right that it doesn't really have.

Not only does it carry tens, it borrows ones too! I hope you found this interesting Rick!
Best Regards,
Chris Writt

[^0]

Curta.wk4.jpg

[^0]: Content-Type: image/jpeg; name="Curta.wk4.jpg"
 Content-Disposition: attachment; filename="Curta.wk4.jpg"
 X-Attachment-Id: f_g62uk4u40

