

MICROCOPY RESOLUTION TEST CHART NATIONLL BUNEAU OF STANOARDS-19es

C COMONWEALTH OR AUSTRALIA

The Patents Act 1903~1950

DOM MON WEALTH
18 IN 1951
PATENT OFFICE

APPLICATION FOR A PATENT FOR AN INVENTION COMMUNICATED FROM ABROAD.

I, FREDERIGK BERNHARD RICE, of Club Chambers, 95 Phillip Street, Sydney, in the State of New South Wales, Commonwealth of Australia, Patent Attorney, hereby apply that a Patent may be granted to me for an invention entitled:
"CaLCULATING MACHINE"
And I declare that CURT HERZSTARK of Nendeln in the Principality of Liechtenstein, Engineer, is the actual inventor thereof and that the said invention has been communicated to me by CONIINA BUREAUX UND RECHENAASCHINENFABRIX AKTIEN-GESELLSCHAFT of Vaduz in the Principality of Liechtenstein, Manufacturers, the Assignees of the actual inventor,
and I declare that I am in possession of the said invention and that it is not in use within the Commonwealth of Australia by any other person or persons to the beat of my knowledge and belief; and I further declare that the wald CONTINA BUREAUS UND RECHENMASCHNENFABRIK AKTIEN-GESELLSCHAFT is not resident within che Commonwealth of Australia,

And I make this declaration conscientiously believing it to be true.

Dated this fifteenth day of June, A.D. 1951.

Signed by the said FREDERICK BERNHARD RICE in the presence of :

\qquad

COMMONWEALTH OF AUSTRALIA

The Patent, Act, 1903-50

\qquad

STITEIENI OF ADDRESS FOR SERVICE

SI R,

I hereby authorize and request you to send all notices, requisitions, and communications in connexion with my application for Letters patent for my invention entitled:
"CALCULATING MACHINE"
to my address : -

Cub Chambers,
96 Phillip Street Sydney. N.S.W. Australia.

(FREDERICK B. RICE)

Dated: 17th May 1951

To The Commissioner of Patentee, Commonwealth of Australia

DOCUMENTS
 LODGED WITH
 THIS APPLICATION
 ARE UNSUITABLE

FOR REPRODUCTION

AND MAY BE
INSPECTED AT THE

PATENT SPECIFICATION an 27II/s/
int. CI. (51) GOGG 3/02
$\begin{aligned} & \text { Application Number } \text { (21) } 2711 \\ & \text { Lodged } \text { (22) } \\ & 18.5 .51\end{aligned}$

Complete Specification
ontitled (54) CAFLCERLATPNG MAFCMMNE

Lodged (23) 18. 5. 5/
Publisid (as) Hb (ai) 1 APdoncd
Published (41) 19.5. 51
Convention Priority (30) N/L

Applicant (71) FREDERICR BMRNAXD RICE

The following statement is a full description of this invention, including the best mothod of parforming it known 10 MF

ORIGINAL.

COMMONWEALTH OF AUSTRALIA

The Patents Act, 1903-1950.

COMPLETE $\quad \therefore$ SPECIFICATION
"CaLCULATING MACHINE."

I, FREDERICK BERNHERD RICE, of Club Chambers, 96 Phillip Street, Sydney, in the State of New South Wales, Commonwealth of Australia, Patent Attorney, hereby declare this invention and the manner in which it is to be performed to be fully described and ascertained in and by the following statement : -

The invention relates to a calculating machine for all four specios, having a minimum size, in which the riguro drums and the assooiated transmission mombers of the result counting mechanism and of the revolution counting mechanism aro arranged in a circle around a common driving member (for example an echelon drum).

It is an objeot of the invention to house the mombers of the result and rovolution counting mochanisms in the machine space available in the minimum size (pocket size) of the present circular calculating machino in a manner to obtain completely soparate figure patterns for roth counting mechanisms with the uso of structural components as simple as possible which are moreover spacs seving and permit an easy assembling of the caloulating mechanism gears arranged on thom.

In order to attain these rojects, the figure drums and associated counting mechailism members of the rosult counting mechanism and of che revoiution counting mochanism are arranged, according to the invention, on the same circle which should be as small as structurally possible, in tivo groups ontirely separated from one another by an angular interval, and moreover off-sot in angular pitch so that the two counting mochanisms jield figure patterns separated from one ar ${ }^{+\prime}$ ar, and the members of each counting mechanism group bridge the transmission members of the other group without ongaging them as soon as they get into the zone of non-pertinent transmission members when performing a decade transfor of the total counting mochanism.

In the accompanying drawings a form of ombodiment of the caloulating machine according to the invontion is shown on an enlarged scale by way of exemple, the figures showing only those compononts which are required for an understanding of the invention.

Fig. 1 shows a verticai section through a mininum size calculating machine, part of which only ia represented, with the counting mechanisms ongaged, whereas

Fig. 2 shows the same with the ounting mechanisms disengaged.

Figs. 3 and 4 show diagrammatically the result and revolution counting mechanisms in plan view in their normal position, and in a position moved out of the normal position by soveral docados, rospoctivoly.

Fig. 5 shows a still more onlarged vertioal seotion through the counting mechenism of a aomewhat modified embodimant.

Fig. 6 shows the body of a counting machanism according to Fig. 5 in plen viow, and

Fig. 7 is a part view of the counting mochanism as seon from outsido.

Figs. 8, 9, 10 and 11 diagrammatically represent some details of the minimun size oalculating machine, relevant to the invention.

On ε vertical shaft 2 journalled in the machine body 1 a driving eiement is arranged which consists of an ochelon drum W having two groups of teeth Z_{1}, Z_{2} on its circumferonce, off-set 180° with respeot to one anothor (Fig. 11), of which the group Z_{1} aots on the trensmission members 3 of the result counting mechanism R, and the group Z_{2} on the

```
\because - 3 
```


2711 败

transmission members 4 of the ravolution counting mechanism U. Both counting wechanisms R and U aro aquipped with on ordinary number oi piaces and a through-going deoade transfer.

The rovolution counting mechanism U as shown in Figs, 3 and 4 is arranged in the body 5 of the counting mechanism on the sector left free by the rosult counting mochanism U and on the same circle as the lattor. The body 5 of the counting mechanisri rosts with a bush 5' on a contral sleovershapad projection 6 of the machine body 1 so as to be capable both of boing rotated ans boing shifted axially. It can be lifted झgeinst the bias of the compression spring 7 so far that the transuission pinions 8for the figure drums 9 of the result couriting mechanism and the transmission pinions 8^{\prime} for the figure drums 9^{\prime} of the revolution counting mechanism get out of engagement with the transmission pinions 10 , 11 of the adjustinent memberis 3,4 . As will bo soen from Figsa 1 and 2, tho spring 7 bears with its one ond against flango $5^{\prime \prime}$ of the bush 5^{\prime}, and with its other ond against a ing 27 held on the sleave 6 by a cirolip 26.

On the shaft 2 there is moreover the operating crank 29 securod for rotation by pin 28. By turaing said crank, the shaft 2 and the echelon drum w connected therewith for rotation are set in rotary motion. In the elovated position of the body 5 of the counting mechanism as shown in Fig. 2 of the drawings, the total counting mechanism oan undergo a decode transfer. The arrosting of the iond 5 of the counting mochaniem after each deoade transfer is offoctod for oxample by a pin 12 insorted into the machine body 1 and engaging a
recess 13 of a rest rim 30 of the body 5 of the counting meahmism (Figs. 1, 2 and 10). The rost rim 30 has rooesses 13 which serve for the housing of the axles 14 of the figure drume 0,91 and of the transmission pinions 8,81 of the result counting mechanism and of the revolution counting mechanism, respectively, and still leave spooe free suffiolent for the pin 17 to be capable to ongage the recess for the purpose of arresting the body 5 of the counting mechanism. The radially projecting axles 14 may be sorewed to the rest rim 30 by means of screws 31; as shown in Figs. 1 and 2, or sltornativoly cast into the body of the counting mechanism when the lattor is made by injection moulding (Fig: 5).

The figure drums 9,9' and the transmission pinions 8,81 integral with them ars pushed over tho sxles 14 from outside, and are loosely rotatable on thems.

The body 5 of the counting meohanism shows, in the embodiment according to Figs. 5,6, a flange 15 projecting from tho centre portion which flange torminates in an odge 16 diracted upwards at a right angle. In the flange 15 there is providad a hole 17 over oach axle 14 designed for housing a ball 18. The ball 18 is pressod into the interstices betweon the teeth of the transmission pinions 8,8t respectively, under the action of leaf springs 19. Theroby the figure drums $9,9^{\prime}$ are always retained in a correct pueition when at rest. For the sake of simplicity, the springs 19 are combined into a spring spider punched out in one piece. The body 5 of the counting mechanism is covered by

271151

a cup shaped ring 20 made for arample of shoet metal which is provided with display oponings 21 for the flgure drums 9,9!. The display openings 21 are open towards the midde of the machine, and are covered in this region by the offacer 22 (not to bo diescribed in detail). The cover ring 20 is equipped at its upturned edge with an external thread and with recesses 23 . With these recesses 23 the cover ring 20 embraoes the free onds of the axles 14 , and with the bases of these recesses 23 it rests on the onds of these axles.

The cover ring is sorewed into a sleove 24 having an internal threzd 25 which sleevo serves as a grip for lifting the counting mechanism out of ongagoment when performing a docade transfar. When sorowing the cover ring 20 and the sleove 24 togethor, the former is contered by the recessos 23 according to the position of the axles 14 so that the axles 14 of the figure drums and the contre lines of the display openings 21 are in accurate juxtapisition. Moreover, the covor ring 20 and the axles 14 form togethor a mutually stiffened structure whon tightoning the sloove 24. A furthor advantage of this device can bo soen therein that aftor unscrewing the omponents 20,24, the figure drums 9,91 with tie transmission pinions $8,8^{\prime}$ oon be asily romoved sideways from the machine, and can be as oasily rofittod into the latter.

Because of the relatively very small diametor of the machine, very small intervals only remain between the result counting mechanism and the rovolution counting mechanism, and moreover the angular distances betwoon the mombers of
the counting mechanisms have to be dimensioned very small. Accordingly, when performing a decade transfer, the counting. mechanism of the result mechanism-gets into the range of . the rovolution counting mechanism. Lost the transmission pinions 8 of the result mechanism get into mesh with the transmission pinions 11 for the revolution counting mochanism when performing this transfor, the pinions 8 of the rosult mochanism R are off-set with respect to the corresponding pinions 8^{\prime} of the rovolution counting mechanism U by e.g. half an angular pitch "t" (Figs. 3, 4 and 6). The angular distance of the first figure of the result mechanism R from the last ifgure of the revolution counting mechanism U and, conversely, of the last figure of the result counting mochanism from the first figure of the revolution counting mochanism amounts to " 1.5 ". In the same way the transmission x sone 12. (Fig. 4, group u) of the rovolution counting meohands are off-set with respect to the transmission pinions 10 (Fig. 4, group $\underline{\text { S }}$) of the result mochanism R. In the position of the total counting mechanism as shown in Fig. 4 , the latter is displaced for example by three decades from the normal position so that three of the toothed mabers 8, 9 and $8^{\prime}, 9^{\prime}$, respectively, of the result and revolution counting mechanisms are locatod between the transmission pinions 11 and 10, raspotively, and are accordingly out of mesh with them (compare Fig. 9).

Heving now fully described and ascertained mix my aaid invention and the manner in which it is to be performed, I declare that what I claim is :-

1. A oaloulating machine in which the figure drums and counting mechanism members of the result counting meohaniam and of the revolution counting mechanism are arranged around a common driving momber on the same circle, divided into two groups ontirely soparated from one another by angular interm vels, so that the two counting mechanisms yield two patterns of ifigures, the one soparated from the other.
2. A oalculating machine as set forth in claim 1 , in . which the moribors of the rovolution counting mechanism are off-set aith respect to the corresponding mombers of the rosult counting mechanism by such an angular interval, for example $1.5 t$ if t donotes the pitch, that when performing a docade transfer by turning the casing of the counting mechanism, those mombers of the one counting meohandsm which get into the range of the mambers of the other counting mochanism romain out of mosh therewith.
3. A oaloulating machinc as sot forth in claim 1, in which two groups of teoth, the one separated from the other, are arranged on the echelon drum, the one group of teeth acting on the members of the result counting mechanism, and the other group of toeth acting on the mombers of the revolution counting mechanism,
4. A caloulating machine as set forth in ciaim 1 , in which the spaces provided in the hody of the counting mochanism for the housing of the axles of the figure drums form at the same time locking rests for tho locking members of the arresting device of the oounting mechanism.
5. A calculating machine as set forth in claim 1 , in which the axles of the figure drums freely project from the body of the counting mechanism in the fashion of the spokes of a wheal.
6. A ooloulating machine as set forth in claim 5, in which the body of the counting mechanism is designed as a cage for spring biased detent balls which hold the figure drums in the correct rest position.
7. A calculating machine as set forth in claim 6, in which t a cover ping having lateral recesses is superimposed on freely projecting ends of the figure drum axles, which ring has display openings and is secured in its arresting position by a sleeve forming a grip for operating the counting mechanism, whereby the said axles and cover ring are mutually stiffened structurally without the use of special components, and moreover permit easy assembling and dismantling of the components of the counting mechanism.
8. A calculating machine as set forth in claim 6, in which a spring spider is arranged on the body of the counting mechanism, resiliently loading all thedetent balls.
9. A calculating machine as claimed in claim 1 , substantially as described with reference to Figs. 1 to 4 and 8 to 11 of the accompanying drawings.
10. A calculating machine as claimed in claim 1, substantially as described with reference to Figs. 5 to 7 of the accompanying drawings.

Dated this 17 th day of May, A. D. 1951.

(FREDERICK B. RICE)

271151

271151

Fig. 5

END

